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A FINITE DIFFERENCING METHOD OF COMPUTING THE STATE
TRANSITION MATRIX FOR ANY TYPE OF TRAJECTORY MCDEL,
CONIC THROUGH N-BODY

By Ellis W. Henry
SUMMARY

This paper presents a method of computing a state transition matrix
by finite differencing differentiation. The method uses & state vector
propagation routine explicitly and is shown to be independent of trajectory
modeling simplification or complexity. Thus it is applicable to an
extensive range of problems. A method of numerical qualification is
discussed to show how to achieve maximum accuracy as well as to determine
that accuracy realistically. The predominant emphasis throughout is

toward applications on a digital computer rather than rigorous mathematical
considerations.

Other methods of computing the state transition matrix are mentioned
to show the relative advantages and limitations. Application of the
method to problems in addition to or instead of transition matrix
computation are suggested.

INTRODUCTION

The state transition matrix is becoming increasingly applicable in
various type of trajectory computer programs including navigation,
guldance, orbit determination, and error analysis. Briefly, the state
transition matrix relates mathematically the effects of propagating
errors (or uncertainties) from one instant of time to another. That is,
for a specific trajectory model and an initial state vector and time
interval, the state transition matrix can be computed and shows a linear
approximation to the change from a nominal trajectory resulting from
arbitrary errors or uncertainties.

It is possible for certain simple trajectory models to compute this
matrix by analytic formulaticns. Even in the simplest model (two-body
conics), the analytic expressions can be formidable as well as restricted



in application (ref. 1). Only slightly more complex models can be solved
analytically, and then generally only by some approximation or simpli-
fication. These may still have restricted application.

The method described in this paper involves partial derivitives
computed by the method of finite differences and is Jjustified through
a combination of intuition, mathematical reason, and computer application.
It will be seen to be applicable to conic trajectories, matched conics,
and oblate planets, and can accommodate N-body perturbations, impulsive.
or finite thrusting, etc. The technique in itself is not new (ref. 2).
This paper is intended first to describe the technique, then to develop
a method of determining its accuracy and/or region of applicability, and
finally to show that it can be made completely independent of the complexity
of the trajectory model. The end product is a concise computer program
with nearly unlimited application.

This method is not intended to be competitive with analytic formu-
lation as far as computation speed when analytic formulations are
adequate. However, this relatively simple formulation provides an ideal
check (test cases) on much more complicated analytic versions, and, as
stated, is readily applicable to otherwise impossibly difficult models
(i.e., state of the art numerical integration trajectory programs).

The appendix gives a sample version of such a program, namely, a
FORTRAN subroutine, which uses a trajectory subprogram explicity, and

thus is applicable to any trajectory model independent of the model
complexity.

DESCRIPTION OF THE STATE TRANSITION MATRIX AND
DEFINITION OF TERMINOLOGY
The state transition matrix, hereafter called the PHI matrix, or ¢,
is a 6-by-6 matrix of partial derivitives of a state vector at the time

tf with respect to the state vector at time to.

By definition, if the initial or nominal state at time to is

S =(F ,¥)=x1i+7y4 S S 1
o o’ Vo 01 YOJ+ZOk, X01+YOJ+zok (1)
(i, 3, and k are unit vectors) and the nominal state at time t, is
defined by
S.= (T, V)= X1 + Y 4 k. X147 347 %
£ g2 Vpl= Xl 4 Y S+ 2k, Xoio4 Yoi + 2ok (2)



then the PHI matrix is
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Note for emphasis that the first column is the partial derivitive
of the state vector at time tf with respect to parameter XO. Similarly

the second column is with respect to Yo , ete.

Frequeﬁtly the literature shows the PHI matrix as "partitioned”, or
made up of four 3-by-3 matrices; i.e.
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If we assume for the moment that the PHI matrix can be obtained and if
we assign errors or uncertainties to each component of So’ which T shall

call 50 _ _ (5)

k]

Then the propagative effects of the initial 60 over the time interval

- (6)

are

BASIS OF NUMERICAL COMPUTATION OF THE PHI MATRIX

Consider any element of equation (3); for example, 8Xf/8Xo.

From the definition of a derivative,

aX (X, + 0X,) - X (X, + 8X.) - X
f:lllll f f f - Iim f T f

X axs0 Xt AX ) - X AX+0 AX

(1)

It Xf can be evaluated from a functional relationship involving

X, then (xf + AX_) is obtained from (xo + AXO). To obtain the partial

f
derivitive [equation (7)] numerically, we can choose a relatively small
value of AXO and using the functional relationship evaluate the right-

hand side of equation (7). If AX_ could be made arbitrarily smaller,

then the numerical derivitive approaches the precise mathematical value.
On a digital computer, the value of AXO cannot approach zero too closely

due to truncation to a finite number of digits. It will be shown, however,
that a sufficiently small value can be used which yields results suffi-
ciently accurate for most requirements. All 36 elements of the PHI matrix
can be expressed similarly to equation (7).



ACTUAL COMPUTATION OF THE PHI MATRIX - ASSUMPTTONS
AND PROCEDURES

At this point, it is necessary and convenient to assume that a state
vector propagation routine is available, so that we can write

f

wn

= G(E:, 1) (8)
o

where 1t represents the time interval, At, and perhaps an actual date, if
required by the model.

For convenience, equation (8) may be written with the notation
(xf, Yoo Zos Xpo Yoo zf,) =G (xo, Yos Zos X» Yo, Z_» ). These
notations will be used interchangably. The equations simply imply
that, given a state vector 36 (by which we mean a state vector at any

instant of time), we can find the corresponding state vector at any
other instant of time (1t = At). G implies some trajectory model of an
unspecified degree of complexity which functionally relates Sf to SO

through a time interval. Specifically for computer application, we
assume G is a subroutine which accepts as inputs the initial state
vector and time interval, along with whatever other inputs are required
to specify uniqueness, and produces as an output the resulting Sf. The

FORTRAN notation might be CALL G (SO, DT, SF).

We are now equiped with the basic formulation and techniques to
compute ¢ [equation (3)) by the method of equation (7).

£ from XO

We first note that for equation (T7), we need to compute X
X, Y., Z,.) =

roine &, g2 Ypo B Koo Yoo Zg )
. W i .
G (XO, LIPS S S Zs ) e have also obtained Y., Z, Za

which will be required for the second, third, . . ., sixth column evalua-
tions.

using our subroutine G, i.e., (X
2 k]

When we replace Xo with (XO + AXO) in our subroutine G, we obtain

' + X + AX .Y +AY .7 4+ A7) =
(xf + BX, Yf + AYf, Zf ézf, X, AXf, Y. Yoo 2 AZf)
G(X +8X ,Y ,2 ,%X,¥Y is interpreted as the
o (o] [e] 6]

s 2o 1), where AX
K

o f



change in Xf due to a small change in XO with YO e e . 20 unchanged.

Without elaboration, it should be noted that we now have not only those
values to evaluate equation (T), but also all quantities in column one
of equation (3) by similar expressions. Now if we evaluate

e} (Xo, Yo+ Y , Z, X s Y s z,, 1) Wwe can compute all elements in column
two, and so on through column six.

To review the steps taken in the actual evaluation of the PHI matrix,
we used the G subroutine once to obtain the nominal state vector at the
time tf. A1l of these six output values were used; each was used in only

one column, but in every element (row) in that column.

Then the G routine was used six more times. Each use involved
changing only one of the nominal inputs by a small amount, but this change
produced changes in all six of the output values, thus allowing the
computation of all the elements in an appropriate column.

The subroutine G was applied seven times. (In general, if an N x N
matrix is required, a subroutine would be called upon N + 1 times.) By
efficient FORTRAN coding, using DO loops and subscript notation, the
above wordy description takes on a very neat and concise mathematical

appearance. An example appears in the appendix - excluding but assuming a
subroutine G.

APPLICATION AND SELF-CHECK TEST CASES

Equation (6) shows one of the simplest gpplications of the PHI matrix
It can be used to test, qualify, and calibrate the PHI matrix computation.

Presumably, if we compute the PHI matrix and assume a set of devia-

tions 60 (errors or uncertainties) in the nominal trajectory, then those

deviations propagate by equation (6) over the interval At to produce

§. =66 (9)

Effectively we predict the deviations at time tf based upon an assumed
set existing at time to’ using ¢. But given that assumed set, we can also

use the G subroutine [equation (8)] to determine the actual deviations
directly; i.e.
1y, R (10)
s 'l]

(§f+?)

Ea
L

o

G [(?o + 6 )

Thus,

\o]
e = (sf + sf) - 5% (11)

o)




The values of 8 produced with equations (10) and (11) are

mathematically precise; they do not depend on any linearity assumptions
and properly include any cross~coupling effects. They are numerically
as accurate as our trajectory computation model (SUBROUTINE G).

The comparable values produced with equation (9) depend upon the
applicability of our linear theory PHI matrix, (i.e., 60 small enough to

apply linear theory) as well as upon the accuracy in computing the PHI
matrix itself.

The qualification of the PHI matrix hinges upon the agreement between
the actual and predicted Gf for the same 60. This self-check test will

be used to evaluate the accuracy of the method on a computer.

This procedure is preferred to some of the identity tests applicable
to a unique formulation for two reasons:

1. The described process is universally applicable and shows
realistically the numerical accuracy of the computed quantities.

2. Even though an identity test may be applicable (such as a
determinate of PHI = 0), precise equivalence cannot be obtained on a
finite digits computer, and that resulting discrepancy may not be
relatable to errors in the computation of the matrix or the test.

NUMERIC QUALIFICATION - DETERMINATION
OF THE INCREMENT vVALUES

Referring back to equation (7) and the associated text, it is
apparent that the accuracy of the PHI matrix dependents upon choosing
AX, . . ., AZ sufficiently small to assume a linear regiocn and yet
large enough to insure significance in the computation. Thus a tradeoff
is required. The comparison of the previous paragraph is used to empiri-
cally determine the best comprcmise.

To remain independent of the units of the initial state vector,
the value of the A's in equation (7) were obtained as a percentage of
the 50, 50 magnitudes; i.e.,

AX = AY = AZ

PR |T_|
o}

(12)

AX = oY = aZ = PR |7_|



where PR (perturbation ratio) is varied parametrically for best
agreement between actual and predicted Gf's when the Go's were of a

size comparable to the A's.

To fix at least an approximate value of the A's for use on a digital
computer, let us begin by considering the accuracy of the G subroutine.
For discussion, let's assume the output of the G subroutine is, say,
1L digits of significance (perhaps not unreasonable for a double precision
routine). The numerator of equation (7) is obtained from the differences
in two solutions produced with the G routine. The denominator is the
amount that the inputs were changed to obtain the different outputs.

If the input A's are so small that only the least significant digit

of each output is changed, then the difference in two solutions

has only one digit of accuracy; thus PHI is correct to one significant
digit. We surely require more accuracy than this, so the A's must be
increased. The PHI matrix elements can be no more accurate than the
significant digits in the difference of two solutions. The input AV's
must be large enough to change several digits of the output.

At the other extreme we could make the A's so large that all 1k
of the significant digits change. However, this surely stretches our
linearity assumptions. We may try for half as many digits in the PHI
matrix as significant in the G subroutine, then empirically test for
adequacy or improvement in results. Since (Sf + Af) = G(Sé + Ao),

a reasonable assumption is then |Z}| B |ZZ| within one or two orders

of magnitude. We may hope to obtalin seven digit accuracy in Af. Thus

we begin by assuming PR = 1 x 1077 in equation (12) then vary this value
parameterically (by powers of 10) for best agreement between equations (9)
and (11). The next section of this paper shows the results of this
empirical calibration.

ACTUAL NUMERIC ACCURACY IN
PROTOTYPE PROGRAM

While it is impossible to generalize "accuracy'" without limiting
the class of problem to be solved and size of the At interval, a fairly
reasonable expectation for general application in the discussed program

is to use PR = 5 x 1010, The predicted and actual §'s agree to six or
seven digits, depending on the At interval; thus, the PHI matrix has
this order of accuracy.




The problems considered to obtain these empirical values included
circular orbits, high energy ellipses, and hyperbolas of the lunar
and interplanetary scale. They included At intervals of a fraction
of a day up to several hundred days. In the case of elliptic trajectories,
the At intervals were frequently many revolutions, and for hyperbolas
crossed spheres of influence. Further, the G subroutine models included
conic models (Kepler problem) and numerically integrated solutions
(double precision, Cowell method) to conic equations of motion, oblate
planet potential functions, and N-body perturbations.

The accuracy suggested above results from a compromise to obtain
generality.

For applications which limit the general class to a more specific
class, say, for earth-centered hyperbolic trajectories with time intervals
less than three days, then the accuracy can be improved by two or three
significant digits.

It is easy and worthwhile to determine PR empirically for whatever
class problem and G subroutine is appropriate. For this reason, the
PHI matrix routine shown in the appendix allows PR as an input, and
optionally ineludes sufficient printout to determine a quantitative choice
of various PR's for best results and calibration. Obviously, PR could
be varied within the subroutine and a suitable test included to select
the best value used. This is not done to simplify and to keep computation
time at a minimum.

CONCLUDING REMARKS

The chief advantage of the numerical method presented is simplicity
and applicability to any trajectory program; the limitations may be
computational speed or limited accuracy. In the areas of study where
state transition matrices are applied, there are computationally faster
analytical programs for simpler problems and more accurate programs for
complex problems. At the simple extreme, a conic trajectory program,
an analytic formulation (ref. 1) may be more accurate and more efficient
when applicable. As the conic model is improved by including select
perturbation forces (ref. 3), analytic formulation becomes more difficult
and, eventually, prohibitive.

At the complex extreme are precision integrated trajectories which
include N-bodies and oblate planets' spheres of influence, solar pressure,
thrust, drag, etec. These may require integration of the PHI matrix
along with the equations of motion in order to retain sufficient accuracy
and indeed may be more efficient as well.
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In between these two extremes are the hundreds of intermediate
trajectory programs, better than conic but not precise. The numerical
method presented is best suited for these programs, although applicable
at both extremes. It is independent of the complexity of the model,
the formulation, and the features included or omitted. For example,
navigation, guidance, impulse thrust, or finite thrust with steering
logic, etc., may be a part of the G routine.

This method was developed to generate test cases for analytic formula-~
tions of the simplest form, and to extend local capabilities to more
complex problems. It is certain to find some application at either extreme,
but most frequently in the intermediate range.

This paper has dealt exclusively with the state transition matrix
in Cartesian coordinate form, namely the 6-by-6 matrix discussed in
current literature. For whatever other coordinate systems or parameters
are meaningful to derive input and output, a variational matrix (not
necessarily of square dimensions) can be computed using the numerical
method discussed here.

Two examples are

1. A six-degree-of-freedom problem necessitating a 12-by-12 matrix
if attitude and state vector are correlated through navigation, thrusting,

and guidance - an extension of the present PHIMAT routine given a G sub-
routine.

2. A problem of relating a certain set of orbital (osculating)
element deviations at one instant of time to a similar or different set
of deviations at another.
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APPENDIX

FORTRAN SUBROUTINE PHIMAT
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APPENDIX
FORTRAN SUBROUTINE PHIMAT
SUBROUTINE PHIMAT (S0, DT, PR, PHI, ETC.)
DOUBLE PRECISION SO, DT, PR, PHI, TINC, SOP, SFP, ERR
DIMENSION SO (6), PHI (6, 6), TINC (6), SIP (6), SFP (6), ERR (6)
IF (PR.EQ.0) PR = 5.0D-10

TINC (1) - PR ¥DSQRT (SO (1) *#*2 + S0 (2) **2 + 50 (3) **2)

TINC (L4) = PR ¥DSQRT (SO (L) *%2 + 50 (5) #*2 + 50 (6) *%2)
TINC (2) = TINC (1)
TINC (3) = TINC (1)
TINC (5) = TINC (L)
TINC (6) = TINC (k)

C FOLLOWING CALL IS SYMBOLIC. ACTUAL CALL DEPENDS ON ROUTINE USED.
CALL G (S0, DT, SF)

DO 20 I

1, 6

DO 10 J

1, 6
C S0p, SFP INDICATE PERTURBED S0, SF

10 soP (J)

[}

so(J) (J)

SOP (I) = S0P (I) TINC (I)
CALL G (SOP, DT, SFP)
0 20 K = 1, 6
20 PHI (K, I) = (SFP(K) - SF (K)) / TINC (I)
C RETURN AT THIS POINT UNLESS CALIBRATION TESTING REQUIRED

C SUME INITIAL ERRORS IN SO ARE TINC



1L

PRINT 200, TINC
C  COMPUTE ERRORS AFTER DT USING PHI, ASSUMING A MATRIX TIMES
C  VECTOR ROUTING VIA NEXT CALL
CALL MXV (PHI, TINC, ERR)
PRINT 200, ERR
C  COMPUTE ERROR AFTER DT DIRECTLY USING SUBROUTINE G

1, 6

DO 50 I

50 SOP (I)

so (1) + TINC (I)
CALL G (SOP, DT, SFP)

1, 6

DO 60 I

60 ERR (I) = SFP (I) - SF (I)

PRINT 200, ERR
C  ACTUAL AND PREDICTED ERRORS HAVE BEEN PRINTED
200 FORMAT (6D22.11)

RETURN

END
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